
Distance Metrics and Indexing Strategies for a Digital
Library of Popular Music

C. Francu, C. G. Nevill-Manning

Computer Science, Rutgers University
Piscataway, New Jersey 08854, USA

ABSTRACT

People identify powerfully with music: someone might say
ÒthatÕs my song!Ó but they are unlikely to say ÒthatÕs my
book!Ó or ÒthatÕs my picture!Ó A digital library of popular
music therefore has the potential to be a compelling
application of information retrieval technology. Such a
library requires a retrieval method that is appropriate for a
non-technical audience. Experiments on Òquery by
humming,Ó which attempt to retrieve a tune based on sampled
recording of a user singing an excerpt, have heretofore
concentrated on relatively small, well-curated collections.
Scaling up introduces three problems: availability of source
material, an increase in false positive hits, and slower
retrieval. We describe our experiments with MIDI files, propose
a new, more accurate distance metric between queries and
songs, and discuss possibilities for efficient indexing.

1. INTRODUCTION

Digital libraries until now could hardly be described as
popular: they tend to be based on esoteric, scholarly sources
close to the interests of digital library researchers themselves.
We are developing a digital library containing the
quintessence of popular culture: music. The principal mode of
searching this library will be by sung query: the system
should be able to answer the kinds of queries that shop
assistants in music stores deal with every day, where a
customer can sing a tune, but canÕt remember the title or artist.

The operation of our musical digital library is sketched in
FigureÊ1. At the time of collection creation, MIDI files are

gathered from the internet, and indexed based on their note
sequences. At retrieval time, a userÕs sung query i s
transformed from a waveform to a sequence of pitch-duration
events by a pitch tracker. We are using an off-the-shelf pitch
tracker: pitch tracking is beyond the scope of the current
project. Potential close matches are identified using the
precalculated inverted index, and the most promising tunes
are compared to the query using a more expensive distance
function, and returned to the user ranked according to
distance. The distance function must be robust in the face of
pitch-tracking errors, singing errors, and differences between
the query and the tune in both tempo and key.

Libraries of music in digital form have been discussed by [2],
[3], [4]. and [5], but their experiments have been based on
small collections in the order of a few thousand tunes. Scaling
up introduces a number of new problems, including source,
specificity and efficiency.

First, in order to populate a large library, we chose to use
music in MIDI format, because 300,000 tunes are readily
available in this format on the world wide web. MIDI describes
each note as a discrete event with a pitch, start and stop time,
and amplitude. The drawback of the MIDI format is that it was
designed for musical performance rather than analysis, lacks
metadata to describe the form of the song (e.g. which voice i s
the melody, where the chorus is located), and does not
necessarily correspond to musical notation. Also, MIDI files
are not usually of high enough quality for casual listening.
We propose using MIDI files as surrogates for high quality
sampled recordings, such as CD tracks or MP3 format songs.
Under this scheme, the MIDI file allows us to construct an

Pitch
tracker

Quantize
(20ms quanta)

sung query
(sampled waveform)

Quantize
(20ms quanta)

MIDI
files

(from WWW)

MIDI
collection

Index
excerpts
(5 sec)

inverted
index

indexing

querying

Find
candidates

Rank using
distance
function

results
to user

Figure 1 The digital library of popular music: index- and query-time processes

index based on its symbolic representation of the tune, but
the user would be provided with high quality recordings
corresponding to the matching MIDI files.

Second, as the collection grows, the distance between a query
and a tune in the collection must be more accurately
computed in order to maintain the same rate of false positive
hits. Section 2 describes a new approach that matches pitch-
duration contours of the query against excerpts from tunes in
the collection at a variety of transpositions1 and tempos.

Third, the time to compute the distance between a query and
each of the tunes in the collection scales linearly with the size
of the collection. This is unacceptable as collection sizes
grow by orders of magnitude, and an indexing scheme i s
necessary to keep retrieval time close to constant. A
preliminary indexing scheme is described in SectionÊ3.

2. DISTANCE METRICS

The techniques described [4] and [5] treat the query and tune
as sequences of pitch-duration tuples, and use dynamic
programming to match a query to a tune. That is, the match i s
described as the minimum number of deletions, insertions or
replacements of notes required to transform the query into the
tune excerpt. This is analogous to matching notes in a
musical score. The disadvantage of this scheme is that it fails
to take into account the time-based nature of music. By
mapping a quarter note to an eighth note, one tune is out of
time by an eighth note. The inherent synchronization of
musical sequences distinguishes it from applications where
the edit distance has been successfully used, notably in
computational biology where biochemical processes
routinely introduce insertions, deletions and mutations into
DNA sequences. [7] takes a different approach, where tunes are
represented by a graph of pitch versus time, so called
contours. î Maid�n compares two tunes by computing the
area between two contours, as shown in Figure 2. This work
has a number of drawbacks: it considers only simple contours
where each pitch lasts for a multiple of an eighth note, i t
assumes that both tunes have the same tempo, and it does not
consider silence or deal with polyphony.

Our approach computes the distance between a query and an
excerpt from a tune by finding a key and tempo for the query
that minimizes the average difference in pitch between them.
That is, the query is transposed and scaled in such a way as to
minimize the area between the two pitch-duration contours.
First, the contour is quantized into a sequence of notes of
equal duration. Whereas î Maid�n could express any note as a
multiple of an eighth note, the note durations in a MIDI file
usually have a greatest common divisor of one millisecond
(ms). Most notes last a few hundred ms, and can be as short as
8ms. If multiple notes start within 10ms of each other, they
are perceived as simultaneous. Taking these factors into
account we quantize the query and tunes into periods of
20ms.

To explain the procedure, we assume initially that the query i s
sung in the same tempo as the song, the song contains one
monophonic sequence of notes, and the song and query
contain no silent intervals. Under these assumptions the

1 We mean transposition in the musical sense of changing the
key of a tune, rather than in the mathematical sense.

query and tune contours can be expressed as sequences of
numerical note pitches:

q = q1, q2, ..., qm

t = t1, t2, ..., tn

The distance between a query q and a tune t for a given scaling
is defined as:

d q t

m
q t

j

n m

i i j
i

m

(,) min(min)= − +
=

−

+
=
∑1

0
1

∆
∆

The distance is the minimum average difference in pitch
between the query and the song when the query is both
shifted along the song by j quanta and transposed by ∆
semitones. This distance is a metric.

In order to allow different tempos between query and tune we
rescale the query with factors varying between 0.5 and 2 in
coarse steps of 0.1. After finding the best coarse scale, a
similar search is done at three progressively finer
granularities to arrive at a final scale.

A complicating factor with MIDI files is that tunes usually
consist of multiple channels. Each channel usually
corresponds to a different instrument. Furthermore, there may
be polyphony (several notes played simultaneously) within a
single channel. We deal with multiple channels by computing
the distance from the query to each channel and reporting the
minimum distance. Polyphonic channels are made
monophonic by deleting in each time interval every note but
the one with the highest energy. The energy of a note i s
computed as the energy of the acoustic wave front and i s
directly proportional to the square of the product of the
amplitude and the frequency of the note.

When the query and the song contain periods of silence, the
minimal area is computed between matching non-silence
intervals. The area is then divided by the number of note-note
pairs instead of the total length of the query. We require that
the query be at most 66% silence, and that the number of
note-note pairs be at least 75% of the non-silence in the
query.

The distance between a query and a monophonic note
sequence can be computed in O(mn), where m and n are the
lengths of the query and the sequence. We do not have the
space to describe the algorithm in detail, but it consists of
shifting the query along the song, computing the optimal
transposition of the query as the median of the differences
between corresponding pitches, and computing the area of the
shift after transposing the query optimally.

The average-case complexity can be reduced to O(mÊ+Ên) by
evaluating how promising the distance is at each shift. We
first construct a histogram of the pitches in the query and
song fragment. Only if the histograms are similar is the actual

Figure 2 Two pitch-duration contours and the area
between them

distance computed. If the mean is substituted for the median
in calculating the optimal transposition, then the histogram
can usually be updated incrementally each time the query i s
shifted. Therefore most of the shifts will have O(1) computing
time, giving an amortized linear time.

The algorithm can be summarized as follows:

1. Transform polyphonic channels to monophonic channels
(voices) by choosing the note of higher energy whenever
two notes or more overlap.

2. For each voice in the song do

sample voice at 20 ms

at finer and finer scales do

rescale the query to current scale

sample the query at 20msec intervals

for each alignment of the query with the tune,

Find the transposition of the query that
minimizes the area between the two pitch
contours

3. Report the minimum area found

3. INVERTED INDEX

The problem of indexing music is similar to that of indexing
protein sequences. Neither musical nor protein sequences
naturally split into words as text does, and similar sequences
can differ at any location. For this reason, we take inspiration
from BLAST [1], the preeminent DNA and protein retrieval
system. BLAST operates in two phases: it first weeds out the
vast majority of sequences in the database that clearly cannot
match, then computes a more expensive distance on the
remaining sequences.

Our current weeding function creates an inverted index of two
second tune segments where each segment is quantized into
intervals of 200ms. This produces many different intervals, so
extreme intervals, such as those that someone is unlikely to
sing, are discarded, and the remaining keys are clustered. That
is, intervals that are closer than 0.2 from each other are
merged, with a single interval chosen as a representative for
the merged cluster. This reduces the number of keys to
210,000 for 10,000 tunes. A subset of promising matches for
a query can be quickly retrieved based on this coarse
quantization, and the more expensive distance used to rank
them.

4. RESULTS

We used a corpus of 10000 songs downloaded randomly from
the World Wide Web. Twenty queries were matched against
the corpus. The queries were between 4 and 22 seconds long.
For each query, at least one matching tune existed in the
corpus. The system successfully identified several versions of
each song, and for any one query all versions of the correct
song were among the first 16 matches. For most of the queries
the ranked list of best matches including all matching
versions contained less than three false matches. The system
was able to identify modified versions of the songs, e.g.
different tempo, changes in the rhythm during the song,
syncopated versions, slight changes in the tune, etc. The
system performed best on medium size queries (about 6 to 10
seconds). Short queries matched false fragments, while long
queries tended to misalign, due to the fact that subjects do
not maintain a consistent tempo over long periods. Figure 3
provides an example of matching pitch contours. Figure 3a
shows a query (top), and beneath it the five closest contours
in order of similarity from top to bottom. The query has many
small periods of silence, a side-effect of the pitch-tracker, and
thus has few vertical lines between consecutive pitches. The
two closest contours are the correct tune, ÒEvery breath you
takeÓ by the Police, and the remaining three are incorrect
matches. Distances in average pitch difference are 0.05, 0.22,
0.29, 0.56 and 0.56 respectively. Figure 3b shows the best
alignment of the query and the closest contour. Note that the
largest mismatch at 3 seconds is a pitch-tracking error. Figure
3c shows the best alignment of a close incorrect match,
ÒLosing my religionÓ by REM.

In order to calibrate the performance of the automated system,
six human subjects were asked to identify six songs based on
a sung queries. The subjects had no time constraints and were
allowed to replay the queries. A subject was judged to have
recognized a song if they could name it or sing another
fragment of it. Subjects could often sing a song but not recall

a

b

78

80

82

84

86

88

90

0 1 2 3 4 5 6

M
ID

I p
itc

h

Time (s)

query
correct song

c

78

80

82

84

86

88

90

0 1 2 3 4 5 6

M
ID

I p
itc

h

Time (s)

query
incorrect song

Figure 3 Melodic contours of query and matches to ÒEvery
breath you takeÓ by The Police (a) query (topmost) and
close matches (b) query and correct match (c) query and
incorrect match ÒLosing my religionÓ by REM. MIDI pitch i s
in semitones, where 60 is middle C.

the title. None of the subjects were trained musicians, but were
familiar with all of the songs in the experiment.

On average, subjects recognized 1.5 out of the 6 songs, and
nobody recognized more than three. One subject failed to
recognize a single song. In contrast, the system recognized
four songs, outperforming all the subjects. No human subject
recognized either of the two songs that the computer system
missed.

5. CONCLUSION

A digital library of popular music will be a compelling
demonstration of information retrieval technology if queries
can be satisfied efficiently, and results have high relevance.
We have described initial experiments in constructing
accurate, computationally tractable distance measures for
musical queries, and suggested some possibilities for indexes
that will allow near-constant-time retrieval. Future work will
focus on making these techniques robust and testing on a
wider range of subjects with varying musical ability. We
expect that dealing with diverse query quality will present
significant challenges. For example, how well do people keep
time over the duration of a ten-second query? How likely are
people to change key midway through a query? We hope that
segmenting the query will help with both these problems, at
the cost of additional computation. An interesting
application of this technology is in mobile devices, where
screen real estate is scarce, and a sung query for selecting
songs on an audio device could prove invaluable. A wireless
MP3 player could download tunes on demand based on a short
hummed excerpt. We donÕt just want to build a digital library
of popular music: our aim is to produce a truly popular
digital library of music.

6. REFERENCES

[1] Altschul, S.F., Gish, W., Miller, W., Myers, E.W. &
Lipman, D.J. ÒBasic local alignment search tool.Ó J. Mol.
Biol. 215:403-410, 1990.

[2] Bainbridge, D., Nevill-Manning, C.G., Witten, I.H., Smith,
L.A., & McNab, R.J. (1999) "Towards a Digital Library of
Popular Music" Proceedings of Digital Libraries, 1999,
Fox, E.A. and Rowe, N. (Eds.) pages 161Ð169.

[3] Downie, J.S. ÒEvaluating a simple approach to music
information retrieval: conceiving melodic n-grams as
text,Ó Ph.D. Thesis London, Ontario: University of
Western Ontario.

[4] Ghias, A, Logan, J, Chamberlin, D. and Smith, B.C.
(1995), ÒQuery by humming: musical information
retrieval in an audio database,Ó Proc. Third International
Conference on Multimedia '95, San Francisco, CA,
231Ð236

[5] McNab, R.J., Smith, L.A., Witten, I.H., Henderson, C.L., &
Cunningham, S.J. ÒToward the digital music library: tune
retrieval from acoustic inputÓ. Proceedings of Digital
Libraries, 1996, pages 11Ð18.

[6] Mongeau, M. & Sankoff, D. ÒComparison of Musical
SequenceÓ. Computers and the Humanities 24, 161Ð175,
1990

[7] î Maid�n, D. ÒA geometrical algorithm for melodic
differenceÓ. Computing in Musicology 11, 65Ð72, 1998

